If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=11
We move all terms to the left:
15x^2-(11)=0
a = 15; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·15·(-11)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*15}=\frac{0-2\sqrt{165}}{30} =-\frac{2\sqrt{165}}{30} =-\frac{\sqrt{165}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*15}=\frac{0+2\sqrt{165}}{30} =\frac{2\sqrt{165}}{30} =\frac{\sqrt{165}}{15} $
| 10u-9u=-1u | | 4x-4x+28=28 | | (3x-12)-2=x | | 7.39(9.03w-2.81)=4.99 | | 6x+9=3x+51 | | 3k=19.5 | | s15+1=5 | | 1/6r-5=3 | | –2x+4=16 | | –2x + 4 = 16 | | a9-11=61 | | m16+7=10 | | 2/5x-5/6=3/10x4/7 | | 2x+72x+243=21 | | 5.85=4.83n-7.79n | | 3x^2+40x-200=0 | | 12x-8=148 | | X/9=2x-9 | | Y=7x+38=5x+30 | | 5÷n=7;n= | | 115-w=216 | | 2(x+4)+1=4(x-2) | | 3.5^x=7 | | 2.3w=3.4 | | 8/20=t/90 | | (4/9)^2+x^2=(8/9) | | −15x+5= −10x+25−10x+25 | | -(3+n)=-12 | | 125=25^2h+1 | | w.7=0.3 | | t.4=16 | | 1.3s=1.5 |